If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8b^2-18b-5=0
a = 8; b = -18; c = -5;
Δ = b2-4ac
Δ = -182-4·8·(-5)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-22}{2*8}=\frac{-4}{16} =-1/4 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+22}{2*8}=\frac{40}{16} =2+1/2 $
| 3x+14+2x-4=180 | | 6x+18∘=x+93∘ | | 2x+2(7x+3)=182 | | (x-5)+(x+4)=38 | | x+(17-2x)=95 | | 2n+17=21 | | 7x+18=14x-29 | | 7x=18=14x-29 | | x+(13+2x)=91 | | (3x-41)/8=7 | | 3x-41/8=7 | | (a-10)×(a/10)=200a= | | 2+3(2-x)=0,5x-2(X+2) | | 2+3(2-x)=0,5x-2(X+2 | | (a-10)+(a+10)=0a= | | 2(8s+3)-10s=3(2s+2)-9 | | 12(3x+5)-6(2x-3)=4x-42 | | 14/4-7x=8 | | 12^(x-2)=7 | | 5x-5=-5x+10 | | -1/9(x-27)+1-3(x+3)=x+25 | | 4/5x-8/9x=28/9 | | 4/5x-8/9x=31/9 | | X=(9/5)x+32 | | 2(w-6)-4w=-4 | | 6x-21=5x+17+ | | 2/3x3/4=1 | | 8x+2x=6x+4 | | 6x-3(x+1)=0 | | 3(k-2)-2k=-3+6 | | F(x)=-16^2+1900 | | 2/7+3/5=x*3+1/2 |